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Abstract

Precipitation is one of the most important components of the global water and
energy cycles, which together regulate the climate system. Future changes in
precipitation patterns related to climate change are likely to have the great-
est impacts on society. The new generation of geostationary Earth orbit (GEO)
satellites provide high-resolution observations and opportunities to improve our
understanding of precipitation processes. This study contributes to improved
precipitation characterization and retrievals from space by identifying pre-
cipitation types (e.g., convective and stratiform) with multispectral observa-
tions from the Advanced Baseline Imager (ABI) sensor onboard the GOES-16
satellite. A machine-learning-based classification model is developed by deriv-
ing a comprehensive set of features using five ABI channels and numeri-
cal weather prediction observations, and trained with the Ground Validation
Multi-Radar/Multi-Sensor (GV-MRMS) system as a benchmark. The devel-
oped prognostic model shows skillful performance in identifying the occur-
rence/nonoccurrence of precipitation (accuracy of 97%; Kappa coefficient of
0.9) and precipitation processes, with overall classification accuracy of 76% and
Kappa coefficient of 0.56. Challenges exist in separating convective and tropi-
cal from other precipitation types. It is suggested to utilize probabilities instead
of deterministically separating precipitation types, especially in regions with
uncertain classifications.
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1 | INTRODUCTION

With enhanced observation capabilities, the new genera-
tion of geostationary Earth orbit (GEO) satellites provides
an opportunity to improve the observation and estimation
from space of precipitation, which is a major compo-
nent of the water and energy cycles. NOAA’s Advanced
Baseline Imager (ABI) sensor onboard the Geostation-
ary Operational Environmental Satellites (GOES-R Series)
provides three times more spectral channels, four times
the resolution, and five times faster scanning across
North and South America when compared with its
predecessor imager onboard previous-generation GOES
(Schmit et al., 2017). Likewise, other GEO sensors with
more than ten spectral channels such as the Advanced
Himawari Imager (AHI) onboard Himawari 8-9, the
Advanced Geosynchronous Radiation Imager (AGRI)
onboard FY-4A, and the Advanced Meteorological Imager
(AMI) onboard GEO-KOMPSAT-2A, together with ABI
(GOES-R), provide global coverage at high spatial and
temporal resolution. An overarching challenge is now to
effectively utilize and explore this huge information gain
for science and applications. Specifically, the improved
temporal, spatial, and spectral resolution of precipita-
tion observations support understanding of highly spa-
tially and temporally varying precipitation processes at
the mesoscale, thereby improving global precipitation
retrievals.

Retrieving surface precipitation from GEO observa-
tions is challenging because the visible (VIS)/infrared (IR)
regions of the electromagnetic spectrum provide mainly
cloud-top-related information. The relation between
cloud-top brightness temperatures and surface precip-
itation rates varies with the type of precipitation (e.g.,
convective versus stratiform precipitation) and the ver-
tical distribution of the processes (Vicente et al., 1998).
Therefore, most quantitative precipitation estimation
(QPE) algorithms using data from active or passive
remote-sensing instruments initially classify the observed
precipitation into different categories before applying
separate observations-to-surface rate relations to improve
the retrieval accuracy. This is an active research domain
(e.g., active microwave observations: Le and Chan-
drasekar, 2012; 2021; passive microwave observations:
Petkovi¢ et al., 2019; VIS/IR: Grams et al., 2016; Thies
et al,, 2008). Challenges in precipitation quantification
from GEO sensors arise at the initial stage of detecting
precipitation processes (Upadhyaya et al., 2020).

Most QPE operational algorithms use part of the chan-
nels available from ABI. The Self-Calibrating Multivari-
ate Precipitation Retrieval (SCaMPR; Kuligowski, 2002;
Kuligowski et al., 2016) uses 5 out of the 16 ABI channels,
while the Precipitation Estimation from Remotely Sensed
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Information using Artificial Neural Networks - Cloud
Classification System (PERSIANN-CCS; Hong et al., 2004)
uses only one channel (i.e., 11.2 pm). While spatial fea-
tures derived from these channels (nine features from
PERSIANN-CCS and two for SCaMPR) provide addi-
tional information, several recent studies have shown that
more features can be derived to aid improved precipi-
tation detection, classification, and quantification (Thies
et al., 2008; Giannakos and Feidas, 2013; Upadhyaya and
Ramsankaran, 2014; Tebbi and Haddad, 2016). As a result,
the information derived from new channels provided by
the recent generation of GEO sensors such as ABI is
still underexplored, while challenges remain in detecting
and quantifying precipitation types such as nonprecipi-
tating cold cirrus clouds or warm/shallow precipitation
from space-based platforms (So and Shin, 2018). For the
first time to the authors’ knowledge, a framework is
designed herein to consistently and systematically ana-
lyze satellite-based indices for precipitation detection and
classification.

An endemic limitation is the limited availability of
standard reference precipitation typologies, which leads
most operational algorithms to utilize unsupervised tech-
niques; For example, SCaMPR and PERSIANN-CCS uti-
lize techniques solely based on the ABI data that do not
explicitly identify precipitation systems or types (Grams
et al., 2016). Their outputs allow for limited physical inter-
pretation of precipitation types observed by ABI.

Reference data play a key role in the precipitation
classification or type identification problem to interpret
and extract physical information observed by GEO sen-
sors. Most recent research studies have either used expert
classified images as reference (Tian et al., 1999; Saitwal
et al., 2003), which limits the volume of data used, or
gauge-based surface precipitation rates (Giannakos and
Feidas, 2013; Tebbi and Haddad, 2016) to separate con-
vective and stratiform precipitation based on precipitation
intensity and duration rather than on the basis of phys-
ical processes. Active remote sensors (i.e., radars) from
ground and space provide a more physical depiction of
precipitation processes and thus more accurate classifi-
cations as they elucidate cloud microphysical properties.
However, only a few studies have attempted to utilize this
information to guide the training of classification models
and understand the information provided by GEO obser-
vations (Thies et al., 2008; Grams et al., 2016; So and
Shin, 2018). However, these studies have been carried out
with a few spectral channels only and with limited use of
derived features or cloud-top properties

The overall objective of the current work is to effec-
tively utilize GOES-16 ABI observations to identify precip-
itation types as seen by ground-based radars to improve
precipitation retrievals. The research questions we attempt
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to answer are: How much information on precipitation
processes or types as observed from ground radars is con-
tained in ABI cloud-top observations? Can they be used to
discriminate the precipitation processes or types identified
with active sensors? How much do modeled environmen-
tal conditions complement the ABI observations?

In this study, we propose to use five day-night chan-
nels from GOES-16 ABI observations (as in SCaMPR, to
facilitate direct comparison with it) to develop a com-
prehensive machine learning model for precipitation type
classification. A comprehensive set of features are derived,
many for the first time, and tested. Information about
low-level environmental conditions complement the ABI
cloud-top information and are derived using numeri-
cal weather prediction (NWP) model-based environmen-
tal features. The reference used is the set of surface
precipitation types provided by the Ground-Validation
Multi-Radar/Multi-Sensor (GV-MRMS) system (Kirstet-
ter et al., 2018) across the conterminous United States
(CONUS).

Following this introduction, Section 2 introduces data
and methods with detailed discussion on newly derived
indices. Section 3 reports the results and analyzes the
experiments carried out, while the last section concludes
and summarizes takeaway points from this work.

2 | DATA AND METHODS
2.1 | GEO satellite: GOES-R Advanced
Baseline Imager (ABI) and derived features

To derive and test a comprehensive set of features,
five ABI channels (channel 8: 6.2 pm, 10: 7.3 pm, 11:
8.5 pm, 14: 11.2 pm, and 15: 12.3 pm) are used in this
study. The brightness temperatures are parallax-adjusted
(Kuligowski et al., 2016). These channels are selected
based on their availability during both day- and night-
time, and they have equivalents in other GEO sensors
(e.g., channels 5, 6, 7, 9, and 10 in METEOSAT Spin-
ning Enhanced Visible InfraRed Imager), thus making this
study more globally applicable to other sensors. The spatial
resolution of the selected ABI channels is approximately
2 km at nadir. Several categories of features are derived
from the ABI observations and from the NWP analyses
(discussed in the next section) and are listed in Table 1.
Early work by Lovejoy and Austin (1979) showed
that multispectral data can improve upon single-channel
approaches to detect and quantify precipitation. Since
then, several channels and combinations of channels have
been used as additional features. The first category of
features listed in Table 1 includes brightness tempera-
tures (BTs) from the five channels. The water vapor (WV)

absorption channels (6.2 and 7.3 um) are sensitive to dif-
ferent levels of tropospheric WV. The 6.2 um (7.3 pm) band
is more sensitive to upper(lower)-level tropospheric WV,
while the IR window channels (8.5, 11.2 and 12.3 pm)
include the 11.2 pm band that is one of the most impor-
tant heritage channels. With greater absorption due to WV
than the 11.2 pm channel, the 8.5 and 12.3 pm channels
are referred to as “dirty” IR bands.

The second category of features includes brightness
temperature differences (BTD; see category 2 in Table 1).
BTD is the most common way of combining information
from two channels and has been significantly explored
in the literature (Tjemkes et al, 1997; Ba and Gru-
ber, 2001; Upadhyaya and Ramsankaran, 2014; Kuligowski
et al., 2016). For example, the difference between IR and
WYV channels is used to separate overshooting cloud tops
and cirrus clouds (Tjemkes et al, 1997) and the BTD
between two IR window channels is used to detect the
cloud phase (Baum and Platnick, 2006; Giannakos and
Feidas, 2013).

The third category of features includes differences
of BTDs (D-BTD; category 3 in Table 1). Recently,
So and Shin (2018) used a D-BTD feature, that is,
(8.5-11.2 pm)—(11.2-12.3 pm), to improve cloud phase
detection. In this study, we expand on this concept, and
all possible combinations of BTDs and D-BTDs are derived
with new channels to explore their usefulness in detecting
different precipitation processes.

The fourth category of features are textures (Te; cat-
egory 4 in Table 1). Textures are the representations of
spatial characteristics of a surface (Mohanaiah et al., 2013).
The texture features derived from several GEO sensors
channels are found to be useful at all stages of the
precipitation retrieval process (Tian et al., 1999; Ba and
Gruber, 2001; Hong et al, 2004; Giannakos and Fei-
das, 2013; Kuligowski et al., 2016). The usefulness of tex-
tures derived from all channels, difference indices (BTD),
and difference of difference (D-BTD) has not yet been stud-
ied. The frequently used grey-level co-occurrence matrix
(GLCM; Haralick et al., 1973) for satellite images is used
to derive texture features. GLCM extends texture mea-
sures beyond first order (such as mean and variance) by
describing second-order features in the satellite image
(Hall-Beyer, 2000). GLCM broadly estimates the joint
probability density function of grey-level pairs in an image
(Xian, 2010; Rampun et al., 2013). In this study, the grey
levels are brightness temperatures, BTDs, and D-BTDs.
Using the GLCM matrix across 5x 5 ABI grids in all four
orientations (0°, 45°, 90°, and 135°), five texture features
are derived, namely “mean,” “variance,” “entropy,” “ho-
mogeneity,” and “contrast”. Mean and variance are the
descriptive statistics. Entropy is a measure of disorder or
randomness (information content). Contrast is a measure

9
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TABLE 1 Categories and number of features used in study
Category Feature type Number of features Example
1 BT (brightness temperature) 5 T6.22
2 BTD (brightness temperature dif- 10 T6.2 - T7.3
ference)
3 D-BTD (difference of BTDs) 25 (T6.2 -T7.3) - (T8.5-T11.2)
4 Te (GLCM textures) 5 textures X (5 category 1+ 10 category T6.2 mean
2+ 25 category 3) = 200
5 Ze (satellite zenith angle) 1 Ze
6 Environmental features (NWP) 19 Details in Table 2

2T6.2 is read as brightness temperature of ABI channel 6.2 pm.

of local variations. Homogeneity is inversely proportional
to contrast at constant energy (Xian, 2010). For details on
the computation and exact definitions of these textures,
the reader is referred to Hall-Beyer (2000). In this study,
the R package “glem” (Zvoleff, 2020) is used to compute
texture features.

To account for the impact of varying viewing geome-
tries on the spatial resolution of the ABI sensor at the sur-
face, satellite zenith angle is also used as a feature (Ze; cat-
egory 5 in Table 1). The last category of features is derived
from NWP model analyses, which provide information
about low-level environmental conditions and comple-
ment the ABI cloud-top information. More details of this
category are discussed in Section 2.3. In total, 260 differ-
ent features derived from five channels and NWP 1 are
explored in this study.

2.2 | Reference: Precipitation types from
multi-radar multi-sensor (MRMS) system

The MRMS system provides a suite of severe weather
and quantitative precipitation estimates (QPE) products by
integrating operational radar observations with rain gauge
observations, atmospheric model analyses, and satellite
data (Zhang et al., 2016). The products are available at
0.01° (~1 km) and 2 min resolution across the CONUS
and southern Canada. As with satellite precipitation algo-
rithms, the MRMS QPE products use different empir-
ical relationships for different precipitation types. An
automated surface precipitation classification is employed
such that appropriate relationships between radar vari-
ables and precipitation rates are derived. There are seven
categories of surface precipitation types: (a) warm strati-
form rain, (b) cool stratiform rain, (c) convective rain, (d)
tropical-stratiform rain mix, (e) tropical-convective rain
mix, (f) hail, and (g) snow. The description of each pre-
cipitation type can be referenced from Zhang et al. (2016).

Kirstetter et al. (2012; 2014) set up a standardized refer-
ence for global precipitation measurement (GPM) ground
validation based on MRMS called GV-MRMS (Kirstetter
et al., 2018). This high-quality GV-MRMS precipitation
type product is aggregated to a temporal scale of 30 min
to mitigate uncertainty due to temporal matching and
the indirect link between cloud-top observations and pre-
cipitation processes, and is used as the reference in this
study.

2.3 | Numerical weather prediction
model-based environmental features

As mentioned above, the relationship between cloud-top
information from GEO sensors and surface precipitation
is underconstrained (Kirstetter et al., 2018). Environmen-
tal variables from NWP models are used to complement
the GEO observations and improve precipitation retrievals
at the surface. To mitigate the overestimation (underes-
timation) of GEO-retrieved rainfall in dry (wet) environ-
ments, relative humidity (RH) and precipitable water (PW)
can be used (Vicente et al., 1998; Ba and Gruber, 2001;
Kuligowski et al., 2016). Recently, Min et al. (2018) demon-
strated the relevance of other environmental features for
precipitation detection and quantification. In this study,
we use NWP information to classify different precipitation
processes. Using NWP model data is consistent with the
reference GV-MRMS precipitation type classification that
uses NWP model-based environmental variables (Zhang
et al., 2016). GV-MRMS uses the surface temperature (ST)
and wet bulb temperature (WBT) to identify the snow,
cool stratiform, and tropical types. The zero-hour analy-
sis of the next-generation hourly updated assimilation and
model forecast cycle Rapid Refresh (RAP) is used. RAP
has been part of the NOAA National Centers for Envi-
ronmental Prediction (NCEP) operational suite since May
2012 (Benjamin et al., 2016). Following Grams et al. (2014),
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TABLE 2 RAP model-based environmental features used in
study
Sl no Environmental variable
1 Vertically integrated precipitable water (kg-m~2)
2 1,000- to 700-hPa mean relative humidity (%)
3 900-hPa relative humidity (%)
4 850-hPa relative humidity (%)
5 700-hPa relative humidity (%)
6 500-hPa relative humidity (%)
7 Surface equivalent potential temperature (K)
8 Surface-based convective available potential
energy (CAPE) (J-kg™1)
9 Surface temperature (C)
10 850-hPa temperature (K)
11 700-hPa temperature (K)
12 500-hPa temperature (K)
13 Height of 0°C isotherm (km)
14 Wind shear from surface to 850 hPa (m-s~!)
15 Wind shear from surface to 700 hPa (m-s™!)
16 Wind shear from surface to 500 hPa (m-s~1)
17 850-500-hPa lapse rate (K-km™1)
18 850-700-hPa lapse rate (K-km™1)
19 Wet bulb temperature

Note: Bold rows are features derived from RAP output, while the other
features are directly available from RAP output.

19 features are derived from the RAP in addition to ST
and WBT (Table 2). Surface-based convective available
potential energy (CAPE) and lapse rates are indications of
atmospheric stability which discriminate different updraft
strengths in continental and maritime air masses. The
vertical wind shear-based variables discriminate storm
modes, such as weak shear for tropical systems and strong
shear for more organized convection. Other variables pro-
vide atmospheric moisture content and degree of instabil-
ity (for details, refer to Grams et al., 2014). Note that radar
reflectivity fields used in MRMS are assimilated in RAP
and details on how assimilated reflectivity fields affect the
training dataset can be found in Benjamin et al. (2016).

2.4 | Data characteristics
and preprocessing

The study has been carried out across CONUS using the
summer season (JJAS) of 2018. The spatial resolution of
the analysis is the ABI native resolution. GV-MRMS prod-
ucts are spatially aggregated to match the resolution of

ABI at the 30-min temporal scale. Conservative quality
controls were applied to the resampled GV-MRMS data
to derive the reference. Firstly, only the most trustwor-
thy GV-MRMS data are identified with the high thresh-
old for radar quality index (RQI). A threshold of 98% is
used for all precipitation types except hail. Given that
hail has low occurrence and its detection is comparatively
less impacted by radar sampling than other precipitation
types, a lower threshold of 90% is used to obtain sufficient
samples. Secondly, to target homogeneous precipitation
types in the matched ABI pixel, only resampled GV-MRMS
pixels with at least 98% of the same precipitation type are
selected, with the exception of 90% for convective and trop-
ical convective mix and 80% for hail. The remaining “mix”
class pixels are not used. Because precipitation intermit-
tency impacts the satellite signal (Upadhyaya et al., 2020),
reference grids including partial precipitation are further
removed, and only grids with percent rain greater than 95%
and less than 5% are used for analysis.

The size of the dataset and the distribution of pre-
cipitation types across months is summarized in Table 3
after applying the quality controls. Note that due, to the
low sample size of GV-MRMS precipitation type “snow”
in summertime, it has not been considered in this study.
The first 70% of the data each month are used for training,
while the remaining 30% is used for testing. To avoid infor-
mation leakage, training and testing cases are checked
to be distinct and have uniform spatial and temporal
representation.

Initial experiments (not shown here) suggest that using
imbalanced data for ML training leads to biased classifica-
tion. Following the recommendations by Sun et al. (2009),
balanced training data were generated using random sam-
pling techniques. The balanced training and the entire
validation sample sizes are presented in Table 3.

2.5 | Random forest and evaluation
statistics

A random forest (RF) machine learning technique is
used to classify precipitation types. RF is shown to be a
robust approach for classification and has been applied
to diverse applications, including in precipitation science
(Kiihnlein et al., 2014; Lazri and Ameur, 2018; Ouallouche
et al., 2018). As its name suggests, random forest is basi-
cally a forest of decision trees building on two concepts
of “randomness” (Breiman, 2001): First, the training data
are randomly sampled following the concept of “bagging”
(Breiman, 1996); Second, a subset of randomly selected
features are used to build each decision tree. Diaz-Uriarte
and De Andres (2006) summarizes several advantages of
RF: (a) RFs produce unbiased estimates with low variance,
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TABLE 3 Quality-controlled sample size across GV-MRMS different precipitation types and months
Convec Cool_Strat Hail NoPrecip Trp_ConvMix Trp_StratMix WarmsStart

June 36,322 17,966 17,848 998,225 8,896 131,724 3,455,179
July 33,426 109 13,586 1,242,849 17,118 124,527 2,895,582
Aug 18,864 916 6,849 790,553 5,380 72,797 2,690,175
Sept 26,137 112,548 2,491 1,087,205 36,472 554,228 5,682,992
JJAS (Total) 114,749 131,539 40,774 4,118,832 67,866 883,276 14,723,928
Train (70%) 87,919 98,677 31,612 2,966,493 51,842 651,764 10,694,772
Test (30%) 26,830 32,862 9,162 1,152,339 16,024 231,512 4,029,156
Balanced training sample sized
Balanced train 31,612 31,612 31,612 31,612 31,612 31,612 31,612

(b) there is minimal overfitting, (c) RFs are effective in
building nonlinear relationships between the predictors
and the predictand, and (d) there are only a few parameters
that require tuning.

One RF parameter is the number of bootstrap samples
(n) to develop n number of trees. For each RF tree, m is the
number of randomly selected features. We used 500 trees
(n) with m = y/(no.of features) = 16 . A sensitivity analy-
sis was performed to fine-tune these parameters, but did
not show significant impact on the classification accuracy.
Thus, for all experiments, these two parameters were kept
as indicated above. The ML framework “scikit-learn” in
Python (Pedregosa et al., 2011) is used for implementing
random forest.

To evaluate the model, a confusion matrix is built with
the probability distributions of RF-classified precipitation
types. It is used along with individual type (classified pre-
cipitation type) accuracy and overall classification accu-
racy. The statistics derived from this matrix are briefly
described below. More details can be found in Congal-
ton (1991).

2.5.1 | Overall accuracy

This is the proportion of total grids correctly classified irre-
spective of individual class accuracy. It is computed as the
ratio (in percent) of the number of correctly classified data
points to the total number of data points.

2.5.2 | Kappa coefficient

This is the difference between the obtained agreement
and the agreement expected by chance. A Kappa value
of 0.85 indicates that there is 85% better agreement
than by chance alone. Typical values for Kappa are —1

(no agreement), 0 (random agreement), and 1 (perfect
agreement).

2.5.3 | Class accuracy
This it the accuracy obtained for each class. It is calcu-
lated as the ratio of the number of correctly identified
data points and the reference sample size for a given class,
expressed in percent. It is equivalent to the probability
of detection (POD) for each class. These values are the
diagonal elements of the contingency matrix (Figure 1).
Additional details on the characteristics of RF and
accuracy assessment are provided as required in Section 3.

3 | RESULTS AND DISCUSSION

3.1 | Model accuracy assessment

In case of multiclass classification problems, RF inherently
builds different forests/models for each class. As an out-
put, RF computes the probability that any given sample
belongs to each class (precipitation type), and the sample is
assigned to the precipitation type associated with the high-
est probability. While the developed model is probabilistic
in nature, in general itis used in a deterministic manner. In
this study, we analyze results from both the deterministic
and probabilistic perspectives.

In terms of deterministic classification, Figure 1 shows
the normalized contingency matrix, along with other
statistics reported in Section 2.5. It is normalized across
all GV-MRMS precipitation types for ease of intercom-
parison between different types. It is complemented by
Figure 2, showing each panel of the confusion matrix
(i.e., each combination of RF-classified and reference pre-
cipitation types) as two frequency curves of probabilities
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Hail I . RF Estimated Types
§ Convec [N m Hail
12| Trp_ComViVIix BomES
S m Trp_ConvMix
@ |Trp_StratMix I )
e Trp_StratMix
2 | I
E WarmStart - m WarmStart
S €00 St m Cool_Strat
NoPrecip | m NoPrecip
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
RF Estimated Types Overall
Hail Convec Trp_ConvMix Trp_StratMix WarmStart Cool_Strat  NoPrecip Total Accuracy Kappa
Hail 70 26 2 0 1 0 0 100
- Convec 14 47 11 9 19 0 1 100
me;s- Trp_ConvMix| 6 10 55 26 3 0 0 100
Precip |Trp_StratMix| 1 4 12 64 20 0 0 100 7590 0.56
Types | WarmStart 2 10 2 11 72 1 2 100
Cool_Strat 0 0 0 0 3 97 0 100
NoPrecip 1 0 0 0 5 0 93 100
FIGURE 1 Normalized contingency matrix (in percent) as stacked bar chart with data table (lower panel) along with overall

classification accuracy and kappa coefficient. Blue highlighted cells are class accuracy values (probability of detection), and orange
highlighted cells are classes with large misclassification [Colour figure can be viewed at wileyonlinelibrary.com]

estimated by the RF model: the probability of the RF classi-
fied type (pink curve) and the probability of the GV-MRMS
reference precipitation type (green curve). Note that diag-
onal cells have only one pink curve because the sam-
ples are correctly classified. The number at the top of
each panel represents normalized contingency matrix ele-
ments (from Figure 1) along with sample size. This graph
indicates whether the probabilities of the RF classified
type and reference class type are close (in other words
are misclassified with a small difference in probabilities),
or otherwise.

3.1.1 | No-precipitation

Used as No-Precip in Figures 1 and 2, the RF model has an
accuracy of 93% with 5% misclassified in warm stratiform
(Figure 1). False alarms from other classes are low (verti-
cal column of no precipitation) with 2% of warm stratiform
and 1% of convective events misclassified as no precipita-
tion. From Figure 2, one can observe that the estimated
probability is very high, that is, the curve peaks close to
1, indicating that the rain and no-rain separation is robust
with the RF model. Distributions associated with misses
(no precipitation reference cases misclassified into other
precipitation types) display low overlap between the refer-
ence distribution and the distribution associated with the
other precipitation type. Note that the overlap is slightly
higher in case of no precipitation misclassified into warm
precipitation, consistent with the 5% reported in Figure 1.

The challenge will be to classify precipitating pixels to the
appropriate class.

3.1.2 | Stratiform types

These include cool stratiform (CoolStrat), warm stratiform
(WarmStrat), and tropical stratiform/mix (Trp_StratMix).
From Figure 1, the CoolStrat type has accuracy of 97%,
with 3% misclassification into another stratiform category,
that is, warm stratiform. This high accuracy can be
attributed to the use of the wet bulb temperature as an RF
predictor feature, while MRMS uses it also to identify Cool-
Strat. CoolStrat false alarms are also low, again with 1% of
warm stratiform pixels incorrectly classified as cool strati-
form. Similar to no precipitation, the robustness of the RF
model is very high; that is, the probability curve is close to
1 (Figure 2). Warm stratiform has an accuracy of about 72%
and is mostly misclassified as tropical stratiform mix (11%)
and convective (10%) types. Warm stratiform displays large
false alarms also from the same types (around 20% from
each). From Figure 2, one can see that there are signif-
icant overlaps in the probability curves for Trp_StratMix
and convective in warm stratiform. This indicates that the
lower probabilities estimated by the RF for the estimated
and observed type are close, so these types may gener-
ate misclassification. A more detailed analysis on these
effects will be reported in a companion article (Upadhyaya
et al., 2021). Topical stratiform/mix (TSM) has an accu-
racy of 64%. It is misclassified as tropical convective/mix
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(TCM;14%), warm stratiform (20%), and convective (4%).
False alarms in this class come from the same classes: TCM
(around 26%), warm stratiform (11%), and convective (9%).

3.1.3 | Convective types

These include hail, convective, and tropical convec-
tive/mix. The RF model has accuracy of 55% for TCM.
A majority of misses are classified instead as TSM (26%),
followed by the convective type (10%), as confirmed by
the considerable overlap in the RF-estimated probability
curves (Figure 2). TCM also has significant false alarms
from the same two types (around 12% from each class). The
convective type has accuracy of only 47% and is misclas-
sified as all other rain classes except cool stratiform and
no precipitation. As expected, there is considerable over-
lap between the probability curves, confirming that the RF

model is challenged in separating this class from others. In
the companion article (Upadhyaya et al., 2021), the associ-
ated reasons are explored. Hail has a higher detection score
(70%) than the other convective types. Most of its misclas-
sification occurs in the convective class (26%), associated
with a large overlap in the probability curves. Most false
alarms also come from the convective type.

The developed prognostic model shows skillful per-
formance in identifying the occurrence/nonoccurrence of
precipitation (accuracy 97%, Kappa coefficient 0.9) and
precipitation processes, with an overall classification accu-
racy of 76% and Kappa coefficient of 0.56. The precipitation
types of no precipitation and cool stratiform are classi-
fied with very high classification accuracy and probabil-
ity (close to 1). The classification accuracy for the types
of warm stratiform and hail are relatively high, but the
probability curves peak at values lower than 0.5 for the
remaining types, indicating decreased robustness in the
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RF estimation for these types. As expected, frequently mis-
classified types (i.e., contingency matrix cells with large
percentages) tend to be associated with larger amounts of
overlap between the two probability curves than for the
types that are misclassified less frequently. As indicated
by stacked bars and highlighted by cells from the contin-
gency matrix in Figure 1, one can note a shifting loop in
the misclassification trend from convective to tropical con-
vective/mix to tropical stratiform/mix to warm stratiform
and back to convective, and between the hail and convec-
tive types. While these precipitation types reflect different
precipitation processes, it is challenging to separate them
deterministically from the GOES16 ABI observations. This
motivates the use of a probabilistic rather than determinis-
tic classification to increase the information content used
in the interpretation of identified precipitation types and
in rate estimates.

3.2 | Case studies
Two randomly selected case events are evaluated visually
and quantitatively by analyzing the contingency matrix in
Figure 2. The RF classification results are compared with
GV-MRMS and with SCaMPR (Kuligowski et al., 2016).
The first event on July 6, 2018 at 0900 UTC is a
case of a well-developed summer precipitation system
in the southern Great Plains (Figure 3). Figure 3a,d

show the reference GV-MRMS precipitation types and
the RF-estimated precipitation types, respectively. The
RF probabilities estimated for each precipitation type are
given as Figure S1, and the probability of the estimated
dominant type at each pixel is shown in Figure 3f. Compar-
ing Figure 3a and d, it can be observed that the RF model
captures the occurrence of precipitation and the spatial
shape of the precipitation event, yet there is noticeable
overestimation of the raining area. Most of the precipita-
tion false alarm area is classified as warm stratiform, which
is consistent with the findings in Section 3.1. Sources of
error causing this misclassification may include subpixel
rainfall variability along the edges of rainy areas associated
with the satellite sampling resolution (i.e., nonuniform
beam filling [NUBF] as reported in Kirstetter et al., 2012;
2014 and Upadhyaya et al., 2020). Other sources of error
can arise from the spatiotemporal matching between ABI
and GV-MRMS, and possibly also internal MRMS pro-
cedures to avoid virga (Zhang et al., 2016). In contrast,
SCaMPR misses large areas of precipitation (Figure 3c).

Heavy precipitation regions (Figure 3b), such as the
narrow stream in the north side and the small patch of
heavy rain rates in the southwest that are classified as con-
vective and hail types by GV-MRMS (Figure 3a), are well
captured by the RF model estimates (Figure 3d). However,
the spatial extent of the convective and hail areas are over-
estimated by the RF estimates relative to the GV-MRMS
precipitation types.
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Note that precipitation types from GV-MRMS have
their own sources of uncertainties and limitations, and
might not optimally transfer to the satellite classification.
Using the full information content of the RF retrievals
through probabilities of precipitation types makes more
sense than attempting to deterministically and exactly
replicate the reference. From the dominant probability
map (Figure 3f) and Figure S1, and from the contin-
gency matrix (Figure 4), it can be observed that regions
of misclassification are generally associated with lower
dominant RF probability values. The estimated probabil-
ities for both the misclassified and the correct reference
types are less than 0.5, indicating that the RF estimates
in these regions are uncertain. Such regions where the
probability is less than 0.5 are highlighted as grey in
Figure 3e, and labeled as “uncertain” type. To account for
the detection of precipitation, this uncertain type is further
refined into uncertain rain (U:Rain) and uncertain no rain
(U:NoRain).

Several different sets of rules can be developed to iden-
tify uncertain regions and types U:Rain and U:NoRain.
Three of them are displayed and compared in Figure 5:

1. “Uncertain” can be defined such that the dominant
estimated probability is less than 0.6, and this is
subdivided into U:NoRain if the no precipitation type
probability is in the range of 0.4-0.6, or U:Rain if

the no precipitation type probability is less than 0.4
(Figure 5d); or

2. “Uncertain” can be defined as when the first dominant
estimated probability is less than twice as high as the
second dominant probability; if either this first domi-
nant or the second dominant type is no precipitation,
then it is classified as U:NoRain (Figure 5e); or

3. A threshold of 0.5 is used to define the dominant prob-
ability; to separate U:NoRain, the same rule as in rule 2
is applied (Figure 5f).

By visually comparing the three maps, the rule 3 map
appears to be closest to GV-MRMS. It is evident that these
sets of deterministic rules include some subjectivity and
may not necessarily generalize to other places and times.
Further, in GV-MRMS, some regions at the edges of the
rain field can be highlighted as “uncertain” (Figure 5c)
because the dominant precipitation type is less than 80%
in the space and time scale of aggregation. Note that the
GV-MRMS mask associated with RQI is not visually used
since it would remove significant precipitation areas (pink
patches in Figure 5b), indicating there may be some uncer-
tainty in GV-MRMS at lower RQI.

The second randomly selected event occurred on
August 12, 2018 at 2300 UTC (Figure 6) across complex
terrain of the western CONUS. It is characterized by scat-
tered convection (also called air mass thunderstorms). As
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in the previous case, the rain area is overestimated by the
classification scheme. From Figure 6c, it can be noted that
SCaMPR picks up the larger systems located in the west
but misses several small scattered events, while the RF
estimations correctly detect almost all scattered convective
cells. From the contingency matrix and probability curves
(Figure 7), all precipitation types are estimated with low
probability, except no precipitation. Some hail regions and
no precipitation pixels are estimated with high probabil-
ity, but large rain areas are estimated as uncertain types
(Figure 6e,f).

RQI values are generally low across the western
CONUS, which indicates that the MRMS coverage is lim-
ited (Figure 6a). This case highlights the potential of GEO
sensor observations for complementing the limited radar
coverage across the Intermountain West.

3.3 | Feature importance and optimal
model selection

As a diagnostic tool, the random forest model provides
feature importance from training. The feature importance

indicates how much each feature contributes to decreasing
the mean Gini impurity (a measure of misclassification)
in a forest (Pedregosa et al., 2011). This measure is nor-
malized to sum to 1 and is ranked accordingly. The feature
importance can be used to analyze which features are
important for the classification and to select features in
order to create more interpretable and less computation-
ally expensive models if the application requires it.

Figure 8 shows the first most important features con-
tributing up to 65% of total feature importance. Most
of the RAP model-based environmental features have
higher importance than satellite features, especially the
temperature-related RAP features. Regarding satellite fea-
tures, D-BTD and textures derived from D-BTD have
higher importance than other satellite features. The inter-
ested reader is referred to the companion article (Upad-
hyaya et al., 2021) that details which features contribute to
each precipitation type classification.

In this study, a total of 260 features are used, most
of which may contribute little to the classification accu-
racy. A feature reduction experiment is carried out to
select a more parsimonious model; that is, with the fewest
possible features without significantly compromising the
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classification accuracy. Figure 9 illustrates the reduction
in the classification accuracy for each precipitation type
when gradually removing features in reverse order of
importance (based on the cumulative feature impor-
tance values). The threshold used for cumulative fea-
ture importance along with the number of features are
given on the x-axis in Figure 9. From Figures 1 and
9, recall that the accuracy of each precipitation type
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is different, with cool stratiform and no precipitation
having the highest accuracy (>90%), followed by warm
stratiform and hail (>70%), tropical classes (<70%), and
convective (<50%).

By removing the last 1% of features based on cumula-
tive importance, the number of features is reduced from
260 to 247 without a significant decrease in classification
accuracy for all precipitation types. Further removal of
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features noticeably reduces the accuracy in the convec-
tive precipitation type category (i.e., hail, convective, and
tropical convective/mix), but the overall accuracy remains
almost identical, since these types represent a relatively
small fraction of the total number of pixels. The overall
accuracy statistic is most sensitive to the accuracy of the
no precipitation and warm stratiform types because their
proportions are significantly higher than other types. This
highlights that the individual class accuracies and con-
tingency matrices should be used instead of the overall
accuracy to assess classification models so that effects on
individual classes are not missed. A drop-in accuracy can
be noted when the number of features is reduced from 63
to 52 (i.e., the cumulative importance threshold is reduced
from 65% to 60%). This indicates that important features
for the convective types are removed, which are the last few
features in Figure 8. These include D-BTDs, BTDs between
WYV and IR, and single-channel features such as T6.2, T6.2
Contrast, T11.2 mean, and T12.3. The companion article
(Upadhyaya et al., 2021) focuses specifically on identifying
and interpreting important features for each precipitation

type.

4 | CONCLUSIONS

Using the Ground Validation Multi-Radar/Multi-Sensor
(GV-MRMS) system as a benchmark, a prognostic
machine-learning-based precipitation type classification
model is developed by deriving a comprehensive set of
features from ABI observations and numerical weather
prediction data. While the developed ML model using
RF is probabilistic in nature, in general, precipitation
type classifications are used in a deterministic manner.
A detailed analysis comparing the deterministic and
probabilistic perspectives is performed and leads to the
following key highlights:

1. The overall accuracy of RF classification is 75.9% and
the Kappa coefficient is 0.56;

2. The precipitation types of no precipitation and cool
stratiform are classified with very high classification
accuracy (>90%) and probability (close to 1);

3. The classification accuracy for the types of warm strati-
form and hail are relatively high (>70%). However, the
corresponding probability curves peak at values lower
than 0.5, indicating decreased robustness in the RF
estimation for these types;

4. Challenges exist in identifying the convective and trop-
ical types;

5. There is a shifting loop in terms of misclassification
from convective to tropical convective/mix to tropi-
cal stratiform/mix to warm stratiform, and back to

Royal Meteorological Society

convective, and between the hail and convective types.
This brings into question the relevance of a determinis-
tic classification, and motivates the use of a probabilis-
tic classification to improve precipitation retrievals.

6. A feature reduction experiment showed that the num-
ber of model predictors can be reduced from 260 to 63
(i.e., a model with the fewest possible features) without
significantly compromising the classification accuracy.

Overall, part I of this article focused on prognostic
modeling; that is, the design, training, and assessment of a
machine-learning-based model for precipitation type and
processes classification. Part II of the article focuses on
the interpretation of the ML model with the objective of
identifying predictors relevant to different precipitation
processes.
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